
Cancers 2022,14, 1174 23 of 24
These findings provide evidence that HOO is endowed with a potential therapeutic
efficacy against cancer in the absence of detectable side effects. Due to its pharmacokinetic
and pharmacodynamic peculiarities, HOO represents an innovation in the field of comple-
mentary cancer therapy worthy of further clinical studies. Our result provides evidence
that oral administration of ozonized oils with high ozonide content is a novel strategy for
the prevention of cancer relapses and chemo/radioresistance. This approach could be used
in clinical practice to fulfill the lack of anticancer treatments occurring in intervals between
chemo/radio therapeutic regimens.
Author Contributions:
Conceptualization, A.I.; methodology, A.I., A.C.; software, C.R.; validation,
L.B.; formal analysis, A.I., S.S.; investigation, A.I., L.B.; resources, A.C.; data curation, E.F., A.S., M.C.
(Massimo Chiara); writing—original draft preparation, A.I., A.P.; writing—review and editing, Z.K.,
M.C. (Matteo Congiu); visualization, A.C.; supervision, S.S., C.C., G.B.; project administration, A.P.
All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Institutional Review Board Statement:
The study was conducted in accordance with the Declaration
of Helsinki, and the study was approved by the Health Ministry of Malta (approval number 0075/2020
according to EC1924/2006) issued on 17 March 2020.
Informed Consent Statement:
Informed consent was obtained from all subjects involved in the study.
Data Availability Statement: All data are available upon request to the corresponding author.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
Lu, J.; Tan, M.; Cai, Q. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis
mechanism. Cancer Lett. 2015,356, 156–164. [CrossRef] [PubMed]
2. Zhou, D.; Shao, L.; Spitz, D.R. Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 2014,122, 1–67.
3.
Zhong, H.; Xiao, M.; Zarkovic, K.; Zhu, M.; Sa, R.; Lu, J.; Tao, Y.; Chen, Q.; Xia, L.; Cheng, S.; et al. Mitochondrial control of
apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and
cancer. Free Radic. Biol. Med. 2017,102, 67–76. [CrossRef] [PubMed]
4.
Liu, J.; Wang, Z. Increased Oxidative Stress as a Selective Anticancer Therapy. Oxidative Med. Cell. Longev.
2015
,2015, 294303.
[CrossRef]
5.
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy:
The bright side of the moon. Exp. Mol. Med. 2020,52, 192–203. [CrossRef] [PubMed]
6.
Rossmann, A.; Mandic, R.; Heinis, J.; Höffken, H.; Küssner, O.; Kinscherf, R.; Weihe, E.; Bette, M. Intraperitoneal oxidative
stress in rabbits with papillomavirus-associated head and neck cancer induces tumoricidal immune response that is adoptively
transferable. Clin. Cancer Res. 2014,20, 4289–4301. [CrossRef]
7. Kuroda, K.; Azuma, K.; Mori, T.; Kawamoto, K.; Murahata, Y.; Tsuka, T.; Osaki, T.; Ito, N.; Imagawa, T.; Itoh, F.; et al. The Safety
and Anti-Tumor Effects of Ozonated Water in Vivo. Int. J. Mol. Sci. 2015,16, 25108–25120. [CrossRef]
8.
Pennacchietti, S.; Michieli, P.; Galluzzo, M.; Mazzone, M.; Giordano, S.; Comoglio, P.M. Hypoxia promotes invasive growth by
transcriptional activation of the met protooncogene. Cancer Cell 2003,3, 347–361. [CrossRef]
9.
Luongo, M.; Brigida, A.L.; Mascolo, L.; Gaudino, G. Possible Therapeutic Effects of Ozone Mixture on Hypoxia in Tumor
Development. Anticancer Res. 2017,37, 425–436. [CrossRef]
10.
Geretto, M.; Pulliero, A.; Rosano, C.; Zhabayeva, D.; Bersimbaev, R.; Izzotti, A. Resistance to cancer chemotherapeutic drugs
recognizes pivotal regulators in microRNA. Am. J. Cancer Res. 2017,7, 1350–1371.
11. Lin, Y.H. MicroRNA Networks Modulate Oxidative Stress in Cancer. Int. J. Mol. Sci. 2019,20, 4497. [CrossRef] [PubMed]
12. Wani, J.; Majid, S.; Khan, A.; Arafah, A.; Ahmad, A.; Jan, B.; Shah, N.; Kazi, M.; Rehman, M. Clinico-Pathological Importance of
miR-146a in Lung Cancer. Diagnostics 2021,11, 274. [CrossRef]
13.
Colla, R.; Izzotti, A.; De Ciucis, C.; Fenoglio, D.; Ravera, S.; Speciale, A.; Ricciarelli, R.; Furfaro, A.L.; Pulliero, A.; Passalacqua,
M.; et al. Glutathione-mediated antioxidant response and aerobic metabolism: Two crucial factors involved in determining the
multi-drug resistance of high-risk neuroblastoma. Oncotarget 2016,7, 70715–70737. [CrossRef]
14.
Marengo, B.; Monti, P.; Miele, M.; Menichini, P.; Ottaggio, L.; Foggetti, G.; Pulliero, A.; Izzotti, A.; Speciale, A.; Garbarino, O.;
et al. Etoposide resistance in a neuroblastoma cell line is associated with 13q14.3 monoallelic deletion and miRNA-15a/16-1
downregulation. Sci. Rep. 2018,8, 13762. [CrossRef]
15.
Ngo, H.K.C.; Kim, D.H.; Cha, Y.N.; Young-Nam, C.; Surh, Y.J. Nrf2 Mutagenic Activation Drives Hepatocarcinogenesis. Cancer
Res. 2017,77, 4797–4808. [CrossRef]